1. Real functions of single variable. Basic knowledge about functions. Elementary functions. 2. Number sequences. Arithmetic and geometric sequences. Limits of sequences. 3. Limits of functions. Definition and basic calculations. 4. Continuity of functions. Definition and basic properties. 5. Derivative of functions, definition and basic properties. Derivative of elementary functions. 6. Applications of derivatives of functions. Course of examination of functions. Tangential and normal line to graph of a function. 7. Indefinite integrals, its definition and its properties. 8. Methods of integration: direct integration, method of integration by parts and by substitution. 9. Method of decomposition to partial fractions. Integration of rational functions. 10. Special substitutions leading to integrals of rational functions. 11. Definite integrals. Definition, basic properties, calculation procedures. 12. Applications of definite integrals. Plane areas, volumes of solids of revolution. 13. Differential equations.
|
-
Budinský, B., Charvát, J. Matematika I, (část 1). Praha 6.
-
Hlaváček. Sbírka řešených příkladů z matematiky.
-
Charvát J., Hála M., Šibrava Z. Příklady k matematice I. Praha 6.
-
Jirásek, F., Kriegelstein, E., Tichý, Z. Sbírka řešených příkladů z matematiky I. Praha, 1979.
-
Rektorys K. Přehled užité matematiky. SNTL, Praha, 1981.
-
Vlasov A. K. Učebnice vyšší matematiky I, 2.část,. SNTL, Praha, 1958.
|