Lecturer(s)
|
|
Course content
|
Curves and surfaces Line integrals Green theorem Surface integrals Gauss-Ostrogradsky theorem Stokes theorem Potentials, applications to physics Fourier series Fourier integral and transform Laplace transform Calculus of variations, fixed end points problems Free end points problems
|
Learning activities and teaching methods
|
unspecified
|
Learning outcomes
|
Line and surface integrals and their applications, Fourier series and their calculus,Laplace and Fourier transform, calculus of variations.
|
Prerequisites
|
Teaching in English is meant only for erasmus and foreign students. In the case of a small number of students is teaching in a form of individual consultations.
KMA/M102
|
Assessment methods and criteria
|
unspecified
|
Recommended literature
|
-
J. KOPÁČEK. Matematika pro fyziky II, Praha, Matfyzpress, 1998.
-
K. Rektorys a spol. Přehled užité matematiky I, II, SNTL Praha, 1988.
-
KOPÁČEK, J. Matematika pro fyziky III. Matfyzpress, Praha.
-
KOPÁČEK, J. Matematika pro fyziky IV. Matfyzpress, Praha.
|