The first part of the course is devoted to the construction of the classical sentential calculus. At the same time the fundamental notions of logic are demonstrated (axiom, deduction rule, formal proof, formal theorem) and some fundamental assertions are proved (deduction theorem, completeness theorem). It follows an information about further variants of sentential calculus (three-valued sentential logic, modal sentential logic, intuitionistic sentential logic). The second part of the course is devoted to the work with some concrete formal systems (formal arithmetic, group theory, Euclidean and non-Euclidean geometries, ...).
|
-
Balcar, B., Štěpánek, P. Teorie množin. Praha, 1986.
-
Blažek, J., Calda, E., Koman, M., Kussová, B. Algebra a teoretická aritmetika I. Praha, 1983.
-
Kleene, S. C. Mathematical Logic. New York, London, Sydney, 1967.
-
Kopka J. Logika (učební text pro gymnázia).
-
Kopka, J. Matematická logika I.. Praha, 1973.
-
Kopka, J. Přirozená čísla, Přir. F. UJEP, Ústí nad Labem, 2006.
-
Švejdar, V. Logika: neúplnost, složitost a nutnost. Praha, 2002.
|