Vyučující
|
|
Obsah předmětu
|
1. Affine mappings - definition, properties, invariants - the Affine group - equations of affinities - a classification of affinities 2. Mappings of Euclidean spaces - isometries of Euclidean spaces - similarities of Euclidean spaces - equations of mappings - classification of isometries of 1D and 2D Euclidean spaces 3. Conic sections - definition, properties - classification - transformation of conic sections
|
Studijní aktivity a metody výuky
|
nespecifikováno
|
Výstupy z učení
|
The student will gain a basic idea of mappings of affine and Euclidean spaces. The course concludes with a brief introduction to the theory of conic sections.
|
Předpoklady
|
nespecifikováno
|
Hodnoticí metody a kritéria
|
nespecifikováno
This course is suitable for students at least a second year of study of a bachelor degree. It is expected that the student has completed a course of linear algebra (undergraduate level) or analytic geometry (undergraduate level).
|
Doporučená literatura
|
|