Course: Introduction to Machine Learning

» List of faculties » PRF » KI
Course title Introduction to Machine Learning
Course code KI/EUSU
Organizational form of instruction Lecture + Lesson
Level of course Bachelor
Year of study not specified
Semester Summer
Number of ECTS credits 5
Language of instruction English
Status of course unspecified
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Course availability The course is available to visiting students
Lecturer(s)
  • Kubera Petr, RNDr. Ph.D.
Course content
1. Division of machine learning tasks 2. Data classification, types of classifiers 3. Preparation of data and datasets: replacement of missing data, work with categorical data 4. Issues of data dimensionality and methods of its reduction 5 Decision trees (types of metrics, construction) 6. Linear classification, linear separability, linear perceptron and its learning, logistic regression 7. Support vector machines (SVM): problem formulation, SVM as an optimization task 8. Method of support vectors: soft-margin issue, dual SVM formulation, solution using quadratic programming, SMO algorithm 9. Method of support vectors: kernel transformations, types of kernels 10. Neural networks: types of networks, network learning, activation functions 11. Neural networks: nonlinear multilayer perceptron (MLP) and its properties, backpropagation algorithm 12-13. Deep learning: basic principles (convolution, pooling) and practical use of frameworks 14. Evaluation of seminar work and discussion

Learning activities and teaching methods
unspecified
Learning outcomes
This course presents a practical introduction to data processing and analysis via machine learning. We are focused on a basic understanding of the principles of the methods and we emphasise the practical application of the methods. The relevant frameworks in the Python language (Scikit-learn, TensorFlow, Keras, CVXOPT) are used.

Prerequisites
Basics from linear algebra (vectors, matrices, vector spaces) and analysis and basics of Python

Assessment methods and criteria
unspecified
Recommended literature


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester