Course: null

» List of faculties » FSI » UTM
Course title -
Course code UTM/AKFYK
Organizational form of instruction Lesson
Level of course Bachelor
Year of study not specified
Semester Winter
Number of ECTS credits 1
Language of instruction Czech
Status of course Optional
Form of instruction Face-to-face
Work placements This is not an internship
Recommended optional programme components None
Lecturer(s)
  • Novotný Jan, doc. PhDr. Ph.D.
Course content
Numerical sequences and series Numerical sequence and its limit, the sum of numbers. Convergence and divergence of sequences and series. Real functions of one variable Elementary functions (polynomial, rational angle, power, exponential, logarithmic, trigonometric, inverse trigonometric, hyperbolic, hyperbolometrické). Limit and continuity. Heine's theorem. Properties of continuous functions. Differential calculus of real functions of one real variable Derivative of a function, its geometrical and physical interpretation. Basic rules for differentiation, derivatives and differentials of higher order. Theorem on the growth function and its applications. Local and global extremes. Function inflection points, asymptotes graph, graph of a function. Application tasks to extremes functions. Integral calculus of real functions of one real variable Primitive functions, the calculation of the basic types of indefinite integrals (method of integration by parts and substitution methods). Definite Riemann integral, integral mean value. Geometric and physical applications of the definite integral (length of curve, volume and surface of revolution, center of gravity, momentum and inertia). Functional sequences and series Functional sequence, Taylor polynomial. Power series, differentiation and integration of power series. Taylor series, the development of elementary functions into Taylor series.

Learning activities and teaching methods
unspecified
Learning outcomes

Competence in the fundamentals of mathematics, students will be able to solve tasks and problems differential and integral calculus of functions of one variable and finally realizes connections with physical and technological applications.
Prerequisites
Knowledge and skills from the Mathematics preparatory course.

Assessment methods and criteria
unspecified
A necessary condition for obtaining credit is at least 70% attendance at seminars. In addition, credit will be given only if the student succeeds in at least 70% of tests and assignments.
Recommended literature


Study plans that include the course
Faculty Study plan (Version) Category of Branch/Specialization Recommended year of study Recommended semester